Entradas populares- Popular Posts

28 de mayo de 2011

New developments in electronic engineering on fruticulture.

Introduction: Agriculture has benefited from technological advances, the Industrial Revolution 
made ​​it through mechanization and the development of agrochemicals, especially fertilizers and pesticides. Today in the Information Age, there are new technologies like genetic engineering and automation, which provide powerful tools for the management of orchards (Zhang et al.; 2006). Technology contributes to overall improvements in crop productionquality, environmental protection and welfare of animals and people (Cox; 2002). Zhang et al. (2006suggest that innovations in agriculture have been developed mainly in sensors, controllers, remote sensing and information managementMost electronic engineering from adapted or applied to agricultural needs. This paper presents an overview of the main areas of research and applications of Electrical Engineering at orchards, pointing tools, their uses, the main centers of innovation and interest is to accommodate these technologies and their theoretical bases

Targets and theoretical basesApplications of Electronic Engineering in agriculture were born in the developed countries to obtain and manage information with ideas to reduce production costs, increase performance output/input, to prescind from manpower (automation), reduce pollution, meet environmental legislation, to facilitate handling of large and variables areas, increase the efficiency and management of information, meet the new consumer awareness, reduce risks and improve non-destructive research methods, more rapid and continuous (Mahan et al., 2010; Sinfield et al., 2010, Zhang et al., 2006). Cox (2002) notes that the first source of information is the collection of data through the measuring sensors of solids, liquids or gases of interestSinfield et al. (2010) point out that this is obtained through chemical, electrical and optical sensors and Rocha et al. (2010) indicate that patterns should be based on color, texture, borders and looks for the classification and observation of differencesWhile developing interesting technologies Zhang et al. (2006) point out that they must innovate in sensors, controllers, remote sensing and information management, and that these should be standardized (ISO 11783 and ISO 11787for correct exchange of data

Main areas and applicationsAccording to Cox (2002) began the new era from the 60's with the advent of satellites and shuttles to perceive the earth's surface features and in the 70's appears Landsat measuring biomass, soil moisture, based on the reflected radiation. This, according to Zhang et al. (2006), chock Precision Agriculture (PA) that seeks to reorganize the whole system to reduce inputsincrease efficiency and achieve sustainability. To achieve this, should emerging and converging technologies of GPS, GIS (NDVI), miniaturized components of computers, automatic controllers, field and remote collection devices, mobile computing, advanced data processing and telecommunications. According Chaerle et al. (2009What has been developed to work remotely, is the Imagery with fluorescence, thermometry and growthCox (2002) notes the development of technologies for mapping multi-layer representation, the use of LIDAR for three-dimensional details of the surface (fluorescence, plant health and pollution), GPR (ground penetrating radar) for water supply, Infra-red radiometer for plant water status, the GPS to work remotely with 2cm of errorSinfield et al. (2010) point to the use of VRT technologies, the NIR and MIR for pH, EC, N, P, K. to avoid complex laboratory analysis

Fig 1 .- Using technologies from electronic engineering, from top to bottom: Model of automated machinery (Cox, 2002),Determination of fruit quality by crossing variables (Rocha et al., 2010), Characterization of CE Scan using electro-magneticinduction (Godwin and Miller, 2002), Determining the degree ofstress from defoliation of a crop (Du et al., 2008).
Zhang et al. (2006) identifies six groups of variability used in electrical engineering in agriculture: Yield (historical and current distribution), of land (topography, elevation), Soil (fertilityphysical, WRC, chemical and depth), of culture (density, heightmineral and/or water stress), and biophysical properties: LAI, PAR interception, biomass, chlorophyll content, fruit quality), Anomalous (weeds, insects, nematodes, diseases and wind damage) and management (tillage, hybrid, pattern of irrigation and VRT). Also indicates that there may be 2 ways of approach: through maps (grid sampling), and through real-time sensors (these are more expensive and less applied)

Research CentresRocha et al. (2010) states as centers of innovation at the New Holland Company, NASA, Carnegie Mellar Universitywhile Zhang et al. (2006) notes the following countries as pioneers: USA, Canada, Australia, and Eastern Europe countries. Notes currently conducts research in China, Korea, Indonesia, SriLanka, Turkey, Brazil, Argentina, Chile, Russia, Uruguay, ItalyNetherlands, Germany, France, United Kingdom and Costa Rica

Trends and IssuesAccording to Rocha et al. (2010) is moving toward the combination of parameters for catalogs to classify species and varieties through images (Supermarket produce)According to Cox (2002) seeks to achieve work remotely with the development of robotics in the fieldAccording to Sinfield et al. (2010) is working to implement large-scale VRTAccording Gontia et al. (2008) are developing indices for irrigation schedulingZhang et al. (2006) notes that the trend is to work on finer scales (temporal and spatial), in telecommunication network and integrated approaches (universities, specialists, farmers and economists)Mahan et al. (2010) speak of automation through continuous measurements. And Chaerle et al. (2009) suggest that monitors be developed with multi-sensors for more comprehensive situationsZhang et al. (2006) notes that the main problems are the costs of adoption, imperception of benefits, the conservatism of farmers and technology transfer, further notes that must make a concerted effort among all actors in the chain and technology generation innovation

Conclusion: The application of technologies from electronic engineering has provided important tools for fruticulture managing. The use of physiological, technological and economic bases have opened a new form of administration based on accuracy in order to reduce costs and make better use of resources and informationThe future is loaded with a series of components designed for precision agriculture, with measurements and monitored handling computationally, with all the benefits that entails. And mass use of such tools will only be possible as there are trained professionals, technology transfer and economically attractive cost for the industry in general



Excerpt from the review:

1.- Chaerle, L., Lenk, S., Leinonen, I., Jones, H., Van Der Deustraeten, D., Buschnann, C. 2009. Multi-sensor plant imaging: toward the development of a stress catalogue. Biotechnology Journal. 4: 1152-1167.
2.- Cox, S. 2002. Information technology: the global key to precision agriculture and sustainability. Computers and Electronics in Agriculture. 36: 93-111.
3.- Rocha, A., Hauagge, D., Wainer, J., Goldenstein, S. 2010. Automatic fruit and vegetableclassification from images. Computers and Electronics in Agriculture. 70: 96-104.
4.- Mahan, J., Conaty, W., Nielsen, J., Payton, P., Cox, S. 2010. Field performance in agricultural settings of a wireless temperature monitoring system based on a low-cost infrared sensor. Computers and Electronics in Agriculture. 71: 176-181.
5.- Sinfield, J., Fagerman, D., Colic, O. 2010. Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Computers and Electronics in Agriculture. 70: 1-18.
6.- Zhang, N., Wang, M., Wang, N. 2006. Precision agriculture- a worldwide overview. Computers and Electronics in Agriculture. 36: 113-132.


3 comentarios: