Entradas populares- Popular Posts

15 de junio de 2011

Precision Agriculture

Precision Agriculture was born in the late 80's and early 90's in the U.S., Canada, Australia and Western European countries (Zhang etal. 2002)This is a management model which aims to adjust the use of agricultural resources/inputs and farming methods to adapt to heterogeneity in soil or other growing factors (*) within a sector of production or production unitits primary purpose is to respond to variability in spatial and temporal scales very thin, that the difference in traditional agriculture, as the latter tries to standardize the use of resources and management at large scales and working with averages, which may have a high variability in the data which are obtained (FIA, 2008)With this, precision agriculture could achieve greater profitabilityproductivity, sustainability, product quality, environmental protectionfood security, and finally, increased rural developmentTo achieve all these objectives, precision agriculture needs to make use of technologies called Information and communication technologies (ICTs) such as global positioning systems (GPS)geographic information systems (GIS), remote sensing, application technology data entries with variable rates technology (VRT), etc (*)Also, should converge elements of the development of mechanization, the agro-chemistry, automation, biotechnology and genetic engineering, making a triangle between the contributions made by the Industrial Age, the Age of Technology and the current Information Age towards the management of forestry and agricultural systems (Zhang et al. 2002)
The application model of precision agriculture management is evident when it detects a high variation in productivity, be it at both in temporal and spatial scales, and that helps to reduce distortions in the production area and the new trends in production which goes from very small to very large fields and monoculture (FIA, 2008, Zhang etal. 2002)According to FIA (2008) Spatial variability is defined as differences in production in one productive sector, for a same season and a single crop (based on specific site differences), while the Temporal variability, defined as changes in production in one productive sector for a different season and a single crop (based on the comparison of behavior between production periods for the same site). These variabilities can be grouped into 6 classes: Yield VariabilityVariability of Field (geographical, topographical), Variability of Soil (site), Variability in the Growth, Variability of Anomalous agents (pests, disease, injury) and Variability of Management (Zhang et al.2002) and may be associated with the use of different technologies. 
According to FIA (2008) the application of technologies to develop precision agriculture management is divided into 3 stages:
  • Data collection (monitoring of variability and mapping)
  • Processing and Interpretation of the information generated (Analysis)
  • Application of  variables Input and Handling. 
Image 1 .- Stages of the Application of Precision Agriculture Management (FIA, 2008).

This management system must define Management Areas (mapping) that express a mixture evenly among the factors limiting the performance, for which a single input or handling is appropriate to achieve the same output (productivity), and which differ between them, because to get an equivalent output, require different levels of implementation or management inputs (technological receptivity). The zonal discrimination scale, will depend on the ability possessed by the analyst based on the instruments with which it works, the ability of these instruments to discriminate between the inherent variability in assessing and provided by the measurement error (Zhang et al. 2002)Within existing technologies to develop precision agriculture can be mentioned GPS, GIS (NDVI), miniaturized components of computers, automatic controllers, field/remote sensing instruments, mobile Internet computing, advanced data processing and telecommunicationsAccording to Chaerle et al. (2009), the imagery can be applied to fluorescence, temperature measurement and analysis of satellite growth. Cox (2002) states developing technologies for multi-layered representation of maps, the use of LIDAR for three-dimensional details of the surface (fluorescence, health and pollution), GPR (ground penetrating radar) for water supply, measuring radiometers Infra -Red for plant water statusSinfield et al. (2010) point to the use of VRT technologies, the NIR and MIR for pH, EC, N, P, K. to avoid complex laboratory analysisFor its part, FIA (2008) add to the list: vigor maps, digital cameras for assessing the quality of products and their classification, RGB images for analysis of biomass, ultrasound sensors to detect biomass, equipment and application variable volume of pesticides in field, dendrometers automated as the criterion of irrigation, use of NIR (near infra-red radiation) for the analysis of fruit quality in field or laboratory and the new biotechnologies, along the Electronic Engineering

Bibliography:


1.- Chaerle, L., Lenk, S., Leinonen, I., Jones, H., Van Der Deustraeten, D., Buschnann, C. 2009. Multi-sensor plant imaging: toward the development of a stress catalogue. Biotechnology Journal. 4: 1152-1167.

2.- Cox, S. 2002. Information technology: the global key to precision agriculture and sustainability. Computers and Electronics in Agriculture. 36: 93-111.

3.- FIA. 2008. Tecnologías aplicables en Agricultura de Precisión, Uso de tecnología de precisión en evaluación, diagnóstico y solución de problemas productivos. 98 páginas. Fundación para la Innovación Agraria, Santiago, Chile. 


4.- Sinfield, J., Fagerman, D., Colic, O. 2010. Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Computers and Electronics in Agriculture. 70: 1-18.

5.- Zhang, N., Wang, M., Wang, N. 2002. Precision agriculture- a worldwide overview. Computers and Electronics in Agriculture. 36: 113-132. 

1 comentario:

  1. Precision Agriculture was born in the U.S. as a management model which aims to adjust the use of precision agricultural data to achieve definite objectives. It seems like Precision agriculture is the way of the future. It is vital to stay up to date on the latest trends for this. Agriculture.com is a great resource to the latest news, updates, and reports for farmers and other agricultural businesses. While I do work for them, I have worked in the field of agriculture for years and have yet to find another resource that can compare to them. They honestly offer a lot great information there, as well as the chance to interact in their forums, share stories, promote my business, and buy or sell products and services. Check it out.

    ResponderEliminar